131 research outputs found

    The Inflammatory Bowel Diseases and Ambient Air Pollution: A Novel Association

    Get PDF
    OBJECTIVES: The inflammatory bowel diseases (IBDs) emerged after industrialization. We studied whether ambient air pollution levels were associated with the incidence of IBD. METHODS: The health improvement network (THIN) database in the United Kingdom was used to identify incident cases of Crohn's disease (n=367) or ulcerative colitis (n=591), and age- and sex-matched controls. Conditional logistic regression analyses assessed whether IBD patients were more likely to live in areas of higher ambient concentrations of nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and particulate matter <10 μm (PM(10)), as determined by using quintiles of concentrations, after adjusting for smoking, socioeconomic status, non-steroidal anti-inflammatory drugs (NSAIDs), and appendectomy. Stratified analyses investigated effects by age. RESULTS: Overall, NO(2), SO(2), and PM(10) were not associated with the risk of IBD. However, individuals ≤23 years were more likely to be diagnosed with Crohn's disease if they lived in regions with NO(2) concentrations within the upper three quintiles (odds ratio (OR)=2.31; 95% confidence interval (CI)=1.25-4.28), after adjusting for confounders. Among these Crohn's disease patients, the adjusted OR increased linearly across quintile levels for NO(2) (P=0.02). Crohn's disease patients aged 44-57 years were less likely to live in regions of higher NO(2) (OR=0.56; 95% CI=0.33-0.95) and PM(10) (OR=0.48; 95% CI=0.29-0.80). Ulcerative colitis patients ≤25 years (OR=2.00; 95% CI=1.08-3.72) were more likely to live in regions of higher SO(2); however, a dose-response effect was not observed. CONCLUSIONS: On the whole, air pollution exposure was not associated with the incidence of IBD. However, residential exposures to SO(2) and NO(2) may increase the risk of early-onset ulcerative colitis and Crohn's disease, respectively. Future studies are needed to explore the age-specific effects of air pollution exposure on IBD risk

    Characterization of density fluctuations during the search for an I-mode regime on the DIII-D tokamak

    Get PDF
    The I-mode regime, routinely observed on the Alcator C-Mod tokamak, is characterized by an edge energy transport barrier without an accompanying particle barrier and with broadband instabilities, known as weakly coherent modes (WCM), believed to regulate particle transport at the edge. Recent experiments on the DIII-D tokamak exhibit I-mode characteristics in various physical quantities. These DIII-D plasmas evolve over long periods, lasting several energy confinement times, during which the edge electron temperature slowly evolves towards an H-mode-like profile, while maintaining a typical L-mode edge density profile. During these periods, referred to as I-mode phases, the radial electric field at the edge also gradually reaches values typically observed in H-mode. Density fluctuations measured with the phase contrast imaging diagnostic during I-mode phases exhibit three features typically observed in H-mode on DIII-D, although they develop progressively with time and without a sharp transition: the intensity of the fluctuations is reduced; the frequency spectrum is broadened and becomes non-monotonic; two dimensional space-time spectra appear to approach those in H-mode, showing phase velocities of density fluctuations at the edge increasing to about 10 km s−1. However, in DIII-D there is no clear evidence of the WCM. Preliminary linear gyro-kinetic simulations are performed in the pedestal region with the GS2 code and its recently upgraded model collision operator that conserves particles, energy and momentum. The increased bootstrap current and flow shear generated by the temperature pedestal are shown to decrease growth rates, thus possibly generating a feedback mechanism that progressively stabilizes fluctuations.United States. Department of Energy. Office of Fusion Energy Sciences (Award DE-FG02- 94ER54235)United States. Department of Energy. Office of Fusion Energy Sciences (Award DE-FG02-94ER54084)United States. Department of Energy. Office of Fusion Energy Sciences (Award DE-FG02-08ER54984)United States. Department of Energy. Office of Fusion Energy Sciences (Award DE-FC02-04ER54698

    Investigation of the Thomson scattering-ECE discrepancy in ICRF heated plasmas at Alcator C-Mod

    Get PDF
    This paper reports on new experiments at Alcator C-Mod that were performed in order to investigate the long-standing, unresolved discrepancy between Thomson scattering (TS) and electron cyclotron emission (ECE) measurements of electron temperature in high temperature tokamak plasmas. Ion cyclotron range of frequency (ICRF) heating is used to produce high temperature conditions where the type of TS-ECE discrepancy observed in the past at JET and TFTR should become observable. At Alcator C-Mod, plasmas with Te(0) up to 8 keV are obtained using ion cyclotron resonance heating (ICRH), ICRF mode conversion heating and a combination of the two heating methods in order to explore the hypothesis that the presence of ICRH-generated fast ions may be related to the discrepancy. In all high temperature cases, the TS and ECE measurements of electron temperature agree to within experimental uncertainties. We find no evidence for the type of discrepancy reported at JET and TFTR. These results show that the TS-ECE discrepancy does not depend on high temperatures alone and also that the presence of ICRH-generated fast ions is insufficient to cause the TS-ECE discrepancy.United States. Dept. of Energy (DE-FC02-99ER54512

    Characterization of onset of parametric decay instability of lower hybrid waves

    Get PDF
    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (n̄ e ) increases above 10[superscript 20]m[superscript −3]. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmas 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near n̄[subscript e]≈1.2×10[superscript 20]m[superscript −3] . In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an order of magnitude than that of ion cyclotron quasi-modes. When considering the convective threshold near the plasma edge, convective growth due to parallel coupling rather than perpendicular coupling is likely to be responsible for the observed strength of the sidebands. To demonstrate the improved LHCD efficiency in high density plasmas, an additional launcher has been designed. In conjunction with the existing launcher, this new launcher will allow access to an ITER-like high single pass absorption regime, replicating the JLH (r) expected in ITER. The predictions from the time domain discharge scenarios, in which the two launchers are used, will be also presented.United States. Dept. of Energy (Award No. DE-FC02-99ER54512)United States. Dept. of Energy (Award No. DE-AC02-76CH03073

    A Deficiency in the Autophagy Gene Atg16L1 Enhances Resistance to Enteric Bacterial Infection

    Get PDF
    SummaryPolymorphisms in the essential autophagy gene Atg16L1 have been linked with susceptibility to Crohn’s disease, a major type of inflammatory bowel disease (IBD). Although the inability to control intestinal bacteria is thought to underlie IBD, the role of Atg16L1 during extracellular intestinal bacterial infections has not been sufficiently examined and compared to the function of other IBD susceptibility genes, such as Nod2, which encodes a cytosolic bacterial sensor. We find that Atg16L1 mutant mice are resistant to intestinal disease induced by the model bacterial pathogen Citrobacter rodentium. An Atg16L1 deficiency alters the intestinal environment to mediate an enhanced immune response that is dependent on monocytic cells, but this hyperimmune phenotype and its protective effects are lost in Atg16L1/Nod2 double-mutant mice. These results reveal an immunosuppressive function of Atg16L1 and suggest that gene variants affecting the autophagy pathway may have been evolutionarily maintained to protect against certain life-threatening infections

    Radiative heat exhaust in Alcator C-Mod I-mode plasmas

    Get PDF
    In order to more completely demonstrate the I-mode regime as a compelling fusion reactor operating scenario, the first dedicated attempts at I-mode radiative heat exhaust and detachment were carried out on Alcator C-Mod. Results conclusively show that within the parameter space explored, an I/L back-transition is triggered prior to meaningful reductions in parallel heat flux, q||, target temperature, Te;tar, and target pressure, pe;tar, at the outer divertor. The exact mechanism for the I/L trigger remains uncertain, but a multi-diagnostic investigation suggests the pedestal regulation physics is impacted promptly by small amounts of N2 seeded into the private flux region. The time delay between when N2 contacts the plasma and the I/L transition is triggered varied from 30-120 ms, approximately 0.7-3 x tE, and the delay varied inversely with I-mode pedestal-top pressure, pe;95. Power and nitrogen influx scans indicate that the I/L transitions are not linked to excessive bulk-plasma impurity radiation. It is also shown that in the subsequent L-mode following nitrogen seeding, q|| and Te;tar can be reduced by factors of ~10. The I/L transition and L-mode exhaust results using N2 are compared to similar attempts using Ne where such q|| and Te;tar reductions in L-mode are limited to factors of 2-3. Implications for the I-mode regime are discussed, including needs for follow-up experiments on other facilities

    Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models

    Get PDF
    A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.United States. Department of Energy (Award DE-FC02-99ER54512)United States. Department of Energy (Grant DESC0014264

    Assessment of a field-aligned ICRF antenna

    Get PDF
    Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest plasma potentials and poor heating efficiency despite calculations indicating low integrated E∥. In mode conversion heating scenario, no core waves were detected in the plasma core indicating poor wave penetration. For monopole phasing, simulations suggest the antenna spectrum is peaked at very short wavelength and full wave simulations show the short wavelength has poor wave penetration to the plasma core.United States. Dept. of Energy (DOE award DE-FC02-99ER54512)United States. Dept. of Energy (Fusion Energy Postdoctoral Research Program administered by ORISE

    The physics mechanisms of the weakly coherent mode in the Alcator C-Mod Tokamak

    Get PDF
    The weakly coherent mode (WCM) in I-mode has been studied by a six-field two-fluid model based on the Braginskii equations under the BOUT++ framework for the first time. The calculations indicate that a tokamak pedestal exhibiting a WCM is linearly unstable to drift Alfven wave (DAW) instabilities and the resistive ballooning mode. The nonlinear simulation shows promising agreement with the experimental measurements of the WCM. The shape of the density spectral and location of the spectral peak of the dominant toroidal number mode n = 20 agrees with the experimental data from reflectometry. The simulated mode propagates in electron diamagnetic direction is consistent with the results from the magnetic probes in the laboratory frame, a large ratio of particle to heat diffusivity is consistent with the distinctive experimental feature of I-mode, and the value of the simulated χeat the edge is in the range of experimental errors of χefffrom the experiment. The prediction of the WCM shows that free energy is mainly provided by the electron pressure gradient, which gives guidance for pursuing future I-mode studies

    Correlation ECE diagnostic in Alcator C-Mod

    Get PDF
    Correlation ECE (CECE) is a diagnostic technique that allows measurement of small amplitude electron temperature, T[subscript e], fluctuations through standard cross-correlation analysis methods. In Alcator C-Mod, a new CECE diagnostic has been installed[Sung RSI 2012], and interesting phenomena have been observed in various plasma conditions. We find that local T[subscript e] fluctuations near the edge (ρ ~ 0:8) decrease across the linearto- saturated ohmic confinement transition, with fluctuations decreasing with increasing plasma density[Sung NF 2013], which occurs simultaneously with rotation reversals[Rice NF 2011]. T[subscript e] fluctuations are also reduced across core rotation reversals with an increase of plasma density in RF heated L-mode plasmas, which implies that the same physics related to the reduction of T[subscript e] fluctuations may be applied to both ohmic and RF heated L-mode plasmas. In I-mode plasmas, we observe the reduction of core T[subscript e] fluctuations, which indicates changes of turbulence occur not only in the pedestal region but also in the core across the L/I transition[White NF 2014]. The present CECE diagnostic system in C-Mod and these experimental results are described in this paper
    corecore